COURSE INFORMATON						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
Advanced Chemical Process Control	CHBE 541	1 or 2	3 + 0	3	10	

Prerequisites	None

Language of Instruction English

	-
Course Level	Graduate Degree
Course Type	Technical Elective
Course Coordinator	Assist. Prof. Dr. M. Oluş Özbek
Instructors	Assist. Prof. Dr. M. Oluş Özbek
Assistants	To be assigned
Goals	The aim of this course is to provide students with an advanced knowledge of modelling and control of chemical processes.
Content	1) Laplace transforms, Transfer functions, Block diagrams 2) Development of Empirical Dynamic Models from Process Data 3) MATLAB-Simulink Control systems toolbox 4) Dynamic Response Characteristics of More Complicated Processes 5) PID Controller Design, Tuning, and Troubleshooting 6) Frequency Response Analysis and Control System Design 7) Feedforward and Ratio Control 8) Enhanced Single-Loop Control Strategies 9) Multiloop and Multivariable Control 10) Digital Sampling, Filtering, and Control 11) Model Predictive Control

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Ability to use and apply Laplace transforms,	1,8	1,2,3	A,C
transfer functions, block diagrams for system models	, -	1 1 -	,
 Ability to development of empirical dynamic models of simple processes using process data 	1,5,7,8	1,2,3	A,C
3) Ability to use MATLAB-Simulink (control systems toolbox) to simulate the open-loop and closed-loop (feedback) responses of the systems	1,5,7,8	1,2,3,9	A,C
 Ability to develop and analyze the dynamic responses of more complicated processes 	1,8	1,2,3	A,C
5) Ability and in depth knowledge on the PID controller design, tuning, and troubleshooting	1,7,8	1,2,3,9	A,C
6) Ability and in depth knowledge on the frequency response analysis and control system design	1,8	1,2,3	A,C
7) Ability and in depth knowledge on the construction of feedforward and ratio control systems	1,8	1,2,3,9	A,C
 Ability to develop enhanced single-loop control strategies 	1,7,8	1,2,3,9	A,C
 In depth knowledge on the multiloop and multivariable control 	1,8	1,2,3,9	A,C
10) In depth knowledge on the digital sampling, filtering, and control of continuous systems	1,7,8	1,2,3,9	A,C

11) In depth knowledge on the model predictive control strategies		1,5,7,8	1,2,3,9	A,C	
Teaching Methods:	s: 1: Lecture, 2: Question-Answer, 3: Discussion, 9: Simulation				
Assessment Methods:	A: Testing, C: Homework				

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Laplace transforms, Transfer functions, Block diagrams	Textbook-Lecture Notes			
2	Development of Empirical Dynamic Models from Process Data	Textbook-Lecture Notes			
3	Introduction to MATLAB-Simulink Control Systems Toolbox	Lecture Notes			
4	Dynamic Response Characteristics of More Complicated Processes	Textbook-Lecture Notes			
5	PID Controller Design, Tuning, and Troubleshooting	Textbook-Lecture Notes			
6	MIDTERM EXAM 1	Textbook-Lecture Notes			
7	Frequency Response Analysis and Control System Design	Textbook-Lecture Notes			
8	Feedforward and Ratio Control	Textbook-Lecture Notes			
9	Enhanced Single-Loop Control Strategies	Textbook-Lecture Notes			
10	Multiloop and Multivariable Control	Textbook-Lecture Notes			
11	MIDTERM EXAM 2	Textbook-Lecture Notes			
12	Digital Sampling, Filtering, and Control	Textbook-Lecture Notes			
13	Digital Sampling, Filtering, and Control Model Predictive Control	Textbook-Lecture Notes			
14	Model Predictive Control	Textbook-Lecture Notes			

RECOMMENDED SOURCES					
Textbook	"Process Dynamics and Control 3 rd Ed.", Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, Francis J. Doyle, III, John Wiley & Sons (Asia), 2011				
Additional Resources	"Introduction to Process Control", J. A. Romagnoli, A. Palazoglu, CRC Press, 2006 "Chemical Process Control: An Introduction to Theory and Practice", George Stephanopoulos, Prentice Hall, 1984				
	"Michigan Chemical Engineering Process Dynamics and Controls Open Textbook", https://controls.engin.umich.edu/wiki/index.php/Main_Page				

MATERIAL SHARING

Documents, Assignments, Lecture Notes

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	50		
Homeworks	5	20		
	Total	70		
CONTRIBUTION OF FINAL EXAMINATION TO OVI GRADE	30			
CONTRIBUTION OF IN-TERM STUDIES TO OVERA	LL GRADE	70		
	Total	100		

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PRO	OGRAM				
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	Understand and apply fundamental sciences, mathematics and engineering sciences at high level.					Х
2	Have a wide and deep knowledge in his/her field including the latest progresses.					Х
3	Reach the latest knowledge in the field and through its comprehension possess high level competence in required methods and skills for doing research.					
4	Ability to do an extensive study which brings novelty to science and technology, develop a new scientific method or technological product/process, or apply a known method to a new field.					
5	Understand a genuine research process independently, design, apply and carry through; manage this process.					
6	Contribute to science and technology literature by publishing the outcomes of his/her academic studies in prestigious media.					
7	Able to do critical analysis, synthesis and evaluation of ideas and progresses in his/her specialization.					Х
8	Able to communicate and discuss at high level orally, written and visually by using a language at least at the level of European Language Portfolio B2 orally and written.					Х
9	Able to communicate with persons in his/her career and widely with scientific and social ensemble orally and written.					
10	Able to evaluate scientific, technological, social and cultural developments and transfer them to society with senses of scientific disinterest and ethical responsibility.					

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (Excluding the exam weeks: 12x Total course hours)	13	3	39	
Hours for off-the-classroom study (Pre-study, practice)	14	10	140	
Midterm examination	2	(10+2)	24	
Homework	5	6	30	
Final examination	1	(15+3)	18	
Total Work Load				
Total Work Load / 25 (h)			10.0	
ECTS Credit of the Course			10	